63 research outputs found

    Link Invariants and Combinatorial Quantization of Hamiltonian Chern-Simons Theory

    Full text link
    We define and study the properties of observables associated to any link in Σ×R\Sigma\times {\bf R} (where Σ\Sigma is a compact surface) using the combinatorial quantization of hamiltonian Chern-Simons theory. These observables are traces of holonomies in a non commutative Yang-Mills theory where the gauge symmetry is ensured by a quantum group. We show that these observables are link invariants taking values in a non commutative algebra, the so called Moduli Algebra. When Σ=S2\Sigma=S^2 these link invariants are pure numbers and are equal to Reshetikhin-Turaev link invariants.Comment: 39, latex, 7 figure

    Combinatorial expression for universal Vassiliev link invariant

    Full text link
    The most general R-matrix type state sum model for link invariants is constructed. It contains in itself all R-matrix invariants and is a generating function for "universal" Vassiliev link invariants. This expression is more simple than Kontsevich's expression for the same quantity, because it is defined combinatorially and does not contain any integrals, except for an expression for "the universal Drinfeld's associator".Comment: 20 page

    More on quantum groups from the the quantization point of view

    Full text link
    Star products on the classical double group of a simple Lie group and on corresponding symplectic grupoids are given so that the quantum double and the "quantized tangent bundle" are obtained in the deformation description. "Complex" quantum groups and bicovariant quantum Lie algebras are discused from this point of view. Further we discuss the quantization of the Poisson structure on symmetric algebra S(g)S(g) leading to the quantized enveloping algebra Uh(g)U_{h}(g) as an example of biquantization in the sense of Turaev. Description of Uh(g)U_{h}(g) in terms of the generators of the bicovariant differential calculus on F(Gq)F(G_q) is very convenient for this purpose. Finally we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducible representation in the compact case.Comment: 18 page

    Topological Quantum Field Theories and Operator Algebras

    Full text link
    We review "quantum" invariants of closed oriented 3-dimensional manifolds arising from operator algebras.Comment: For proceedings of "International Workshop on Quantum Field Theory and Noncommutative Geometry", Sendai, November 200

    Mapping Class Group Actions on Quantum Doubles

    Full text link
    We study representations of the mapping class group of the punctured torus on the double of a finite dimensional possibly non-semisimple Hopf algebra that arise in the construction of universal, extended topological field theories. We discuss how for doubles the degeneracy problem of TQFT's is circumvented. We find compact formulae for the S±1{\cal S}^{\pm 1}-matrices using the canonical, non degenerate forms of Hopf algebras and the bicrossed structure of doubles rather than monodromy matrices. A rigorous proof of the modular relations and the computation of the projective phases is supplied using Radford's relations between the canonical forms and the moduli of integrals. We analyze the projective SL(2,Z)SL(2, Z)-action on the center of Uq(sl2)U_q(sl_2) for qq an l=2m+1l=2m+1-st root of unity. It appears that the 3m+13m+1-dimensional representation decomposes into an m+1m+1-dimensional finite representation and a 2m2m-dimensional, irreducible representation. The latter is the tensor product of the two dimensional, standard representation of SL(2,Z)SL(2, Z) and the finite, mm-dimensional representation, obtained from the truncated TQFT of the semisimplified representation category of Uq(sl2)U_q(sl_2)\,.Comment: 45 page

    Some computations in the cyclic permutations of completely rational nets

    Full text link
    In this paper we calculate certain chiral quantities from the cyclic permutation orbifold of a general completely rational net. We determine the fusion of a fundamental soliton, and by suitably modified arguments of A. Coste , T. Gannon and especially P. Bantay to our setting we are able to prove a number of arithmetic properties including congruence subgroup properties for S,TS, T matrices of a completely rational net defined by K.-H. Rehren .Comment: 30 Pages Late

    Extension of geodesic algebras to continuous genus

    Get PDF
    Using the Penner--Fock parameterization for Teichmuller spaces of Riemann surfaces with holes, we construct the string-like free-field representation of the Poisson and quantum algebras of geodesic functions in the continuous-genus limit. The mapping class group acts naturally in the obtained representation.Comment: 16 pages, submitted to Lett.Math.Phy

    Galois currents and the projective kernel in Rational Conformal Field Theory

    Full text link
    The notion of Galois currents in Rational Conformal Field Theory is introduced and illustrated on simple examples. This leads to a natural partition of all theories into two classes, depending on the existence of a non-trivial Galois current. As an application, the projective kernel of a RCFT, i.e. the set of all modular transformations represented by scalar multiples of the identity, is described in terms of a small set of easily computable invariants

    On intermediate subfactors of Goodman-de la Harpe-Jones subfactors

    Full text link
    In this paper we present a conjecture on intermediate subfactors which is a generalization of Wall's conjecture from the theory of finite groups. Motivated by this conjecture, we determine all intermediate subfactors of Goodman-Harpe-Jones subfactors, and as a result we verify that Goodman-Harpe-Jones subfactors verify our conjecture. Our result also gives a negative answer to a question motivated by a conjecture of Aschbacher-Guralnick.Comment: To appear in Comm. Math. Phy

    Quantum geometry from 2+1 AdS quantum gravity on the torus

    Full text link
    Wilson observables for 2+1 quantum gravity with negative cosmological constant, when the spatial manifold is a torus, exhibit several novel features: signed area phases relate the observables assigned to homotopic loops, and their commutators describe loop intersections, with properties that are not yet fully understood. We describe progress in our study of this bracket, which can be interpreted as a q-deformed Goldman bracket, and provide a geometrical interpretation in terms of a quantum version of Pick's formula for the area of a polygon with integer vertices.Comment: 19 pages, 11 figures, revised with more explanations, improved figures and extra figures. To appear GER
    corecore